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1. Introduction

Scattering is a measurement technique of choice for polymer systems. In order to understand scattering
data, a model representing the structure is needed. The single macromolecule form factor is an essential 
ingredient for calculating the scattering function. The form factors for a few branched polymer systems are 
discussed here. These include star-branched polymers with linear branches or with looping arms and 
dendrimers. The effect of excluded volume is incorporated using an approach based on the excluded 
volume parameter. This approach is familiar for linear polymer chains and is generalized here to branched 
polymers. 
      Scattering methods have been applied to great many branched polymer systems. This motivated an 
effort at modeling the scattering factors of regularly branched polymers like star-branched polymers or 
dendrimers. A few references are included here. 
      Benoit started the modeling effort by calculating the form factor for Gaussian stars [1]. A recent model 
used the two-point correlation function to derive the form factor for star-branched polymers [2]. The two-
point correlation function that was used was obtained from Monte Carlo simulations [3, 4] for linear chains 
that agreed with renormalization group calculations [5]. This approach incorporated excluded volume due 
to chain swelling. The second form of excluded volume which is due to solid angle exclusion of one arm 
excluding other arms close to the star center is difficult to account for. 
      Renormalization group approaches are well suited for calculations with self-avoiding chain swelling in 
linear polymers [6]. The renormalization group approach was applied to star-branched polymers to account 
for chain swelling [7]. A closed form expression for the scattering factor was presented after the tedious 
task of evaluating some 21 integrals that contribute to the various diagrammatic representations of the 
excluded volume interactions. This paper presented an empirical form for the form factor in specific cases 
using a small-angle (low-Q) expansion. 
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      The Benoit model [1] calculates the form factor for Gaussian chain stars. This model was extensively 
used to analyze scattering data from star-branched polymers such as for instance in theta solvent [8] or in 
melts [9]. This model, however, does not incorporate excluded volume and is not appropriate for the 
analysis of scattering data from swollen chains [10, 11]. 
      The form factor for star-branched polymers with looping branches is calculated in this paper. Such form 
factor was not found in the open literature even in the Gaussian chain case. Its form is derived here for 
swollen chains. This form reproduces the single-branch case of cyclic (ring) polymer. 
      Finally the form factor for dendrimers is calculated that incorporates chain swelling. 
 
 
2.  Star-Branched Polymer with Excluded Volume 
 
      The Benoit approach [1] is used here to calculate the scattering form factor for a flexible star-branched 
polymer represented in Fig. 1. The excluded volume approach developed for linear Gaussian chains [12, 
13] is generalized for star-branched polymers. 
 

 
Fig. 1. Schematic representation of the star polymer. ij i jr =r r−

    is the interdistance between monomers i and j on the same branch. 

 
 
2.1  Form Factor Amplitude for a Single-Branch 
 
      Consider monomer i on a branch of the star referenced with respect to the central monomer (branching 
point) referred to as monomer 1. Each branch contains n monomers. The form factor amplitude for one 
branch is given by a single summation over i: 
 

  
n

1i
i=1

1F(Q)= exp( iQ.r ) .
n

−∑




    (1) 

 
The average is taken over conformations: 
 
           3

1i ij 1j 1iexp( iQ.r ) = d r  P(r ) exp( iQ.r ).− −∫
dd

ddd      (2) 

 
For a flexible polymer coil obeying Gaussian statistics: 
 

ri 
rj rij 
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3/2 2

1j
1j 2 2

1j 1j

3r3P(r )= exp .
2π <r > 2<r >

   
−         

     (3) 

 
A model describing polymer chain conformations with excluded volume is used. The average of the 
segment interdistances squared is kept in the general form: 
 
                2 2 2ν

1j<r >=a |1 j| .−      (4) 
 
ν is the excluded volume parameter. 
 

              
2 2 2νn

i=1

1 Q a |1 i|F(Q)= exp .
n 6

 −
− 

 
∑     (5) 

 
Changing variables j=i 1− , x= j n  then going to the continuous limit, one obtains: 
 

               
1 2 2 2ν

2ν

0

Q a nF(Q)= dx exp x .
6

 
− 

 
∫     (6) 

 
Here a is the polymer chain statistical segment length, n is the degree of polymerization of each branch and 
x is the integration variable. The variable change 2νt=Ux  is performed. After a few manipulations, F(Q) 
can be expressed in terms of the incomplete gamma function: 
 

      
U

d 1

0

γ(d,U)= dt exp( t)t −−∫      (7) 

 
as follows: 
 

 
1/2ν

1F(Q)= γ(1 2ν ,U).
2νU

     (8) 

 
The variable U is given in terms of the scattering variable Q as: 
 

       
2 22 2 2ν

gQ R (2ν+1)(2ν+2)Q a nU= = .
6 6

    (9) 

 
The radius of gyration squared has been defined as:  
 

    
2 2ν

2
g

a nR = .
(2ν+1)(2ν+2)

     (10) 

 
When ν=0.5 , the form factor amplitude reduces to: 
 

( )2 2
g

2 2
g

1 exp Q R
F(Q)= .

Q R

 − −
 
 
 

    (11) 

 
Where Rg is the radius of gyration (with Rg

2 = na2/6 for ν = 0.5). 
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2.2  Form Factor for a Single-Branch 
 
      In order to calculate the form factor for a single-branch, consider two monomers i and j.  
 

    
n n

ij2
i=1 j=1

1P(Q)= exp( iQ.r ) .
n

−∑ ∑


     (12) 

 
In the continuous limit, the double summation is changed into integration. After a few manipulations, one 
obtains the following result [14]: 
 

        
1 2 2

2ν 2ν

0

Q aP(Q)=2 dx (1 x)exp n x .
6

 
− − 

 
∫    (13) 

 
This integral was performed [13] to yield: 
 

       
1/2ν 1/ν

1 1 1 1P(Q)= γ( ,U) γ( ,U).
2ν ννU νU

−     (14) 

 
Here, γ(x,U) is the incomplete gamma function and U has been defined before. 
      Note that for fully swollen chains ν = 3/5 (good solvent), for Gaussian chains ν = 1/2 (theta solvent) 
while for collapsed chains ν = 1/3 (bad solvent). 
 
2.3  Form Factor for Star-Branched Polymer 
 
      In the case of star-branched polymers, the star form factor is given for a star with nb branches by: 
 

   [ ]star b sb b b ib2
b

1P (Q)= n P (Q)+n (n 1)P (Q)
n

−     (15) 

 
in terms of the single-branch form factor Psb(Q) and the inter-branch form factor Pib(Q). For Gaussian 
chains (i.e., when ν = 0.5), Pib(Q) can be expressed as Pib(Q) = |F(Q)|2 in term of the form factor amplitude 
F(Q). 
      When excluded volume contributes (i.e., when 0.5ν ≠ ), the form Pib(Q) = |F(Q)|2 is approximate and is 
referred to as (1)

ibP (Q)  in order to distinguish it for the formally “exact” form (within the context of the 
present formalism) (2)

ibP (Q)  which is expressed as follows: 
 

       
2 2

(2) sb sb
ib 2

(2n) P (Q,2n) 2n P (Q,n)
P (Q)= .

2n
−

    (16) 

 
This is in analogy to the cross product in the binomial formula. For instance, for two branches containing n1 
and n2 monomers, the cross product would be expressed as ( )2 2 2

1 2 1 2 1 2n n = (n +n ) n n /2− − . Here Psb(Q, n) 
is the form factor for a single-branch with n monomers and Psb(Q, 2n) is that for a chain formed with two 
branches (containing 2n monomers). The form factor with excluded volume has been calculated in the 
previous section. 
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2.4  Trends of the Form Factors 
 
      To take advantage of this formalism, a few figures are plotted. First, the single-branch form factor 
Psb(Q) and inter-branch form factor Pib(Q) are plotted without (ν = 0.5) excluded volume. The star-branched 
polymer form factor Pstar(Q) is plotted as well. These plots were produced for the following parameters a = 
5 Å, n = 100, and nB = 3. The overall form factor Pstar(Q) follows the inter-branch part Pib(Q) at low-Q but 
scales with the single-branch part Psb(Q) at high-Q as shown in Fig. 2. For ν = 0.5, 

1/ν 2
sbP (Q )~1/Q ~1/Q→ ∞  while 

22(1) 1/ν 4
ibP (Q )~ F(Q ) ~ 1/Q ~1/Q→ ∞ → ∞ . 
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Fig. 2. Single-branch Psb(Q), inter-branch Pib(Q) and complete Pstar(Q) form factors for a star-branched polymer with a = 5 Å, n = 100, 
nb = 3, and ν = 0.5. 
 
 
      The Kratky plot (Q2P(Q) vs Q) is often used for branched polymers since it is characterized by a peak at 
intermediate-Q. In this case, Kratky plots show that the high-Q asymptotic limit for the single-branch form 
factor is 2 2 1 ν 0

sbQ P (Q ) ~Q ~1/Q−→ ∞  for ν = 0.5 as shown in Fig. 3. The inter-branch form factor is 
characterized by a peak in the Kratky plots since the cross term changes trend to the form 

2 2 2 ν 2
ibQ P (Q ) ~Q ~1/Q−→ ∞  for ν = 0.5. Kratky plots have been presented in a log-log plot in order to 

emphasize the scaling trends. 
      Figure 4 compares the form factors for star-branched polymers with the two forms for the inter-branch 
form factors (1)

ibP (Q)  and (2)
ibP (Q)  with full excluded volume ν = 0.6. These are compared to the Gaussian 

chain case (i.e., with no excluded volume ν = 0.5). Note that in that case (ν = 0.5) the two form factors are 
identical while in the non-Gaussian chain case, they are slightly different. 
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Fig. 3. Kratky plot for the single-branch Psb(Q), inter-branch Pib(Q) and complete Pstar(Q) form factors for a star-branched polymer 
with a = 5 Å, n = 100, nb = 3, and ν = 0.5. 
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Fig. 4. Form factor Pstar(Q) for a star-branched polymer with a = 5 Å, n = 100, nb = 3. The first curve uses the form factor amplitude 
F(Q) method and ν = 0.5. The second method uses the same method but for ν = 0.6 and the third curve uses the block copolymer 
method (binomial formula) and ν = 0.6. Results for these last two methods are so close that the two curves overlap. 
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      The Kratky plots for the same conditions are plotted in Fig. 5. 
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Fig. 5. Kratky plot for the same conditions as the previous figure. 
 
      Next, the number of branches nb is varied for the case with fully swollen chains (ν = 0.6) in Fig. 6. 
Branching becomes pronounced for nb > 3 as evidenced by the peak in the Kratky plot. 
 

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

a = 5 Å, n = 100, n
b
 = 3, and n = 0.6 

nb = 3

n
b
 = 5 

n
b
 = 7 

 Q
2 *P

st
ar

(Q
) 

Q (Å-1)  
 
Fig. 6. Kratky plot for a star-branched polymer with a = 5 Å, n = 100, nb = 3, and ν = 0.6. The number of branches is varied. As the 
number of branches increases, the Kratky plot peak becomes more prominent. 
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3.  Form Factor for Star Polymers with Looping Branches 
 
      The form factor for star-branched polymers with looping branches is derived here. The simple case of a 
flexible polymer ring is considered first. 
 
3.1  Polymer Ring 
 
      The form factor for a polymer ring can be calculated using a multivariate Gaussian distribution 
approach [15, 16]. For a Gaussian polymer ring, P(Q) can be calculated as follows: 
 

    
2 2n

ij
2

i,j

Q <r >1P(Q)= exp .
6n

 
− 

  
∑     (17) 

 
In order to evaluate <rij

2>, construct the ring from a linear chain, which is then closed (see Fig. 7). 

 
Fig. 7. A polymer ring can be constructed by closing a linear chain. 

 
 
      A bivariate Gaussian distribution is defined as: 
 

   
3 2

1 2 μ μν ν2 2
μ,ν

3 1 3P(r ,r )= exp r .D .r .
Δ2πa 2a

   −  
   

∑       (18) 

 
Here 1 ijr =r 

, Δ is the determinant of the correlation matrix C , D  is the inverse ( 1D=C− ) and the 4 elements 

of C  are given by: 2
μν μ νC =<r .r >/a   with {μ, ν = 1,2}. The ring closing step is formed by setting 2r =0

. This 
leaves a univariate Gaussian distribution: 
 

              
3
2 3

2 21
1 11 11 12 2

1 1

P(r ,0) 3 3P(r )= = D exp D r .
2πa 2adr P(r ,0)

   −   
   ∫

d

dd

dd

   (19) 

 
The average mean square distance between two monomers i and j that belong to the looping block of length 
n and statistical segment length a is therefore given by: 
 

      
2

ij
2

11

<r > 1= .
Da

     (20) 

 
More specifically, in this case: 
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2

2
1

11
<r >

C = ( j i)
a

= −  

          
2

1 2
12

<r r >
C = ( j i)

a
= −  

              
2

2
2

22
<r >

C = n.
a

=      (21) 

 
So that: 
 

             
( )11

nD
|i j| n |i j|

=
− − −

 

             
2

2 2
ij

11

a |i j|<r > a |i j| 1 .
D n

− = = − − 
 

    (22) 

 
The form factor for the polymer ring is therefore: 
 

       
2 2 2 2n n

2 2
i,j k=1

1 Q a |i j| |i j| 1 k Q a k kP(Q)= exp 1 = n+2n 1 exp 1 .
6 n n 6 nn n

    − −       − − − − −         
          

∑ ∑  (23) 

 
The first term is dropped for n >>1. In order to simplify this equation, we take the continuous chain limit 
(whereby Q2a2/6<<1 and n >>1 but keeping Q2a2n/6 finite) and change the summations into integrations: 
 

       ( ) ( )
1 2 2

0

Q a nP(Q)=2 ds 1 s exp s 1 s .
6

 
− − − 

 
∫     (24) 

 
We notice the following identity: 
 

                 ( ) ( )
1 12 2 2 2

0 0

Q a n Q a n2 ds(1 s)exp s 1 s = ds exp s 1 s .
6 6

   
− − − − −   

   
∫ ∫   (25) 

 
Therefore: 
 

            ( )
1 2 2

0

Q a nP(Q)= ds exp s 1 s .
6

 
− − 

 
∫     (26) 

 
After integration variable changes and a few manipulations, one obtains the final result [17]: 
 

                D(U)P(Q)= .
U

     (27) 

  
Here D(U) is Dawson’s integral: 
 

    ( ) ( )
U

2 2

0

D(U)=exp U dt exp t .− ∫     (28) 

 

http://dx.doi.org/10.6028/jres.121.006
http://dx.doi.org/10.6028/jres.121.006


 Volume 121 (2016) http://dx.doi.org/10.6028/jres.121.006 
 Journal of Research of the National Institute of Standards and Technology 
 
 
 

 148 http://dx.doi.org/10.6028/jres.121.006 

 

The variable U is given by 2 2
gU= Q a n 6 2= QR 2 . Here gR =a n 6  is the radius of gyration of the 

linear block of length n. 
      The method described here for a single ring can be generalized to calculate more complex structures 
containing looping features. 
 
3.2  Star Polymer with Looping Branches 
 
      Consider a star polymer with looping branches as shown in Fig. 8. Each branch has n monomers of 
segment length a and there are nb branches. In order to use the multivariate Gaussian approach, the star with 
looping branches is opened up into a linear flexible chain of length nbn. 
 

 
Fig. 8. The star with looping branches is opened up. The single-branch form factor involves monomer pairs i and j that belong to the 
same branch. 
 
 
      The correlation matrix for each loop is calculated as in the case of an isolated ring. 
 

   

j i j i 0 0
j i n 0 0

C= .
0 0 n 0
0 0 0 n

 − −
 − 
 
 
  

    (29) 

 
The determinant is: 
 

       2 2j i j i
Δ=n =n ( j i )(n i j ).

j i n
− −

− − −
−

   (30) 

 
The relevant (11) element of the inverse of the correlation matrix is: 
 

          
3

11
11

Δ n nD = = = .
Δ Δ ( j i )(n i j )− − −

    (31) 

 
The single-branch form factor is: 

r1 

r2 r3 

r4 

i j 
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2 2n

sb 2
i,j

1 Q a |i j| |i j|P (Q)= exp 1 .
6 nn

 − − − −  
  

∑     (32) 

 
The single-branch form factor amplitude is: 
 

        
2 2n

sb
i

1 Q a i iF (Q)= exp 1 .
n 6 n

  − −  
  

∑     (33) 

 
Note that for polymer structures in general, the form factor (for monomers along the same chain portion) is 
not the square of the form factor amplitude. This is true only for particles with uniform density, not for 
polymers. For example, the so-called Debye function cannot be put in the form of a square. One can either 
proceed as described in the previous section to obtain an analytical result (in terms of the Dawson function) 
or perform the summations numerically. 
      In order to calculate the inter-branch form factor, monomers i and j belong to two different branches 
(Fig. 9). 
 

 
Fig. 9. The inter-branch form factor involves monomer pairs that belong to different branches. 

 
 
The correlation matrix is: 
 

n+j i n i j 0
n i n 0 0

C= .
j 0 n 0
0 0 0 n

− − 
 − 
 
 
  

    (34) 

 
The determinant and the relevant element of the inverse matrix are given by: 
  

r1 

r2 r3 

r4 

i 

j 
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   2 2Δ=n [ i +i n+j ( j+n)]− −  

   
3

11 2

n 0 0
0 n 0
0 0 n n nD = = = .

Δ Δ i +i n+j ( j+n)− −
    (35) 

 
For the sake of completeness, the pair of monomers are taken to belong to two non-adjacent looped 
branches (Fig. 10). 
 

 
Fig. 10. The two correlated monomers belong to non-adjacent branches. 

 
 
The result for D11 is identical to the previous result for adjacent branches. This conclusion was verified for 
branches that are separated by a couple of branches. This is expected since the opening up of the star with 
looping branches was arbitrary. 
      The single-branch and inter-branch form factors are expressed as: 
 

2 2n

sb 2
i,j

1 Q a |i j| |i j|P (Q)= exp 1
6 nn

 − − − −  
  

∑  

2 2 2 2n n
ij

ib 2 2
i,j i,j 11

Q <r >1 1 Q aP (Q)= exp = exp
6 6Dn n

   
− −   

    
∑ ∑  

2 2 2n

ib 2
i,j

1 Q a [ i +i n+j ( j+n)]P (Q)= exp .
6 nn

 − −
− 

 
∑    (36) 

 
The inter-branch form factor can be expressed as the product: 
 

          
2 2 2 2n n

ib
i j

1 Q a i(n i) 1 Q a j(n j)P (Q)= exp exp
n 6 n n 6 n

   − −
− −   

   
∑ ∑  

          2
ibP (Q)=|F(Q)| .        (37) 

 

r1 

r2 r3 

r4 

i 

j 
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In terms of the form factor amplitude for this inter-branch case: 
 

    
2 2n

i

1 Q a i(n i)F(Q)= exp
n 6 n

 −
− 

 
∑     (38) 

 
which in the continuous limit can be expressed as: 
 

    
1 2 2

0

Q a nF(Q)= ds exp s(1 s) .
6 

 
− − 

 
∫     (39) 

 
This result can also be expressed in terms of the Dawson integral as follows: 
 

D(U)F(Q)= .
U

     (40) 

 
As before 2 2U= Q a n 6 2 . The total form factor for the star is formed using these results. 
 

[ ]star b sb b b ib2
b

1P (Q)= n P (Q)+n (n 1)P (Q)
n

−  

2

star b b b2
b

1 D(U) D(U)P (Q)= n +n (n 1) .
U Un

  −  
   

   (41) 

 
Note that these 2 approaches (analytical and numerical) have been verified to agree completely. The 
summations are performed numerically using the Mathematica software to plot the various form factors. 
      All these results are for Gaussian flexible polymer branches with no excluded volume. The single-
branch form factor Psb, inter-branch form factor Pib and total star form factor Pstar are plotted for a set of 
parameters (nb = 3, a = 5 Å, and n = 100) in Fig. 11. The star form factor varies between the single-branch 
and inter-branch ones as it should. The single-branch form factor has a dominant contribution compared to 
the inter-branch one. At low-Q, the inter-branch form factor dominates since this Q-window involves 
correlations between monomers separated by the size of a branch (at least). 
      Figure 12 shows Kratky plots for the same conditions. Since the high-Q limit follows P(Q ) ~→ ∞

21 Q , the Kratky plot reaches a constant value asymptotically. 
 
3.3  Stars with Looping Branches and Excluded Volume 
 
      The method of introducing excluded volume will be applied here to star-branched polymers with 
looping branches. Note that ν = 0.5 for Gaussian chains (no excluded volume) in theta conditions and ν = 
0.6 (with full excluded volume) in good solvent conditions. The previous section corresponds to the case  
ν = 0.5. 
      The excluded volume parameter ν is introduced in the correlation matrix for the single-branch which 
becomes: 
 

2ν 2ν

2ν 2ν

2ν

2ν

j i j i 0 0

j i n 0 0C= .
0 0 n 0
0 0 0 n

 − −
 
 −
 
 
  

    (42) 
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Fig. 11. Plot of the single-branch form factor Psb(Q), inter-branch form factor Pib(Q) and total star form factor Pstar(Q) for nb = 3,  
a = 5 Å, and n = 100.  
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Fig. 12. Kratky Plot (Q2P(Q) vs Q) for the single-branch form factor Psb(Q), inter-branch form factor Pib(Q) and total form factor 
Pstar(Q) for nb = 3, a = 5 Å, and n = 100. 
 
  

http://dx.doi.org/10.6028/jres.121.006
http://dx.doi.org/10.6028/jres.121.006


 Volume 121 (2016) http://dx.doi.org/10.6028/jres.121.006 
 Journal of Research of the National Institute of Standards and Technology 
 
 
 

 153 http://dx.doi.org/10.6028/jres.121.006 

 

Similarly for the inter-branch, the correlation matrix becomes: 
 

2ν 2ν 2ν

2ν 2ν

2ν 2ν

2ν

n+j i n i j 0

n i n 0 0C= .
j 0 n 0
0 0 0 n

 − −
 
 −
 
 
  

   (43) 

 
As before, D  is calculated as the inverse of the correlation matrix ( 1D=C− ). All the various components 
are summarized here. 
      For the single-branch form factor with no excluded volume: 
 

   11
11

Δ nD = =
Δ ( j i )( n j+i )− −

 

   
2

2 2
ij

11

a |i j|<r >= =a |i j| 1
D n

− − − 
 

 

2 2 2 2n n
ij

sb 2 2
i,j i,j 11

Q <r >1 1 Q aP (Q)= exp = exp .
6 6Dn n

   
− −   

    
∑ ∑    (44) 

 
For the single-branch form factor with excluded volume: 
 

  
2ν 2ν

11
11 2ν 2ν

( i+j ) nΔ
D = =

Δ ( i+j ) +n

−−

− −
 

  
2

2
ij

11

a<r >=
D

 

  
2 2n

sb 2
i,j 11

1 Q aP (Q)= exp .
6Dn

 
− 

 
∑     (45) 

 
For the inter-branch form factor with no excluded volume: 
 

11
11 2

Δ nD = =
Δ i +i n+j ( j+n)− −

 

2
2

ij
11

a<r >=
D

 

2 2n

ib 2
i,j 11

1 Q aP (Q)= exp .
6Dn

 
− 

 
∑     (46) 

 
For the inter-branch form factor with excluded volume: 
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2ν

11
11 4ν 4ν 2ν 2ν

Δ nD = =
Δ j +( i+n) n ( i+j+n)

−
− − −

 

        
2

2
ij

11

a<r >=
D

 

        
2 2n

ib 2
i,j 11

1 Q aP (Q)= exp .
6Dn

 
− 

 
∑      (47) 

 
For the inter-branch case, since the i and j indices are taken over different looping branches, all terms are 
positive and there is no need for the absolute value ( ). 
      The star polymer form factor (without or with excluded volume) combines these components: 
 

    [ ]star b sb b b ib2
b

1P (Q)= n P (Q)+n (n 1)P (Q) .
n

−     (48) 

 
The various summations are performed numerically. 
      Overall the high-Q variation of the single-branch form factor (for the Kratky plot) keeps on increasing 
since it is dominant while that for the inter-branch decreases (Fig. 13). 
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Fig. 13. Kratky Plot (Q2P(Q) vs Q) for the single-branch form factor Psb(Q), inter-branch form factor Pib(Q) and total form factor 
Pstar(Q) for nb = 3, a = 5 Å, and n = 100 with full excluded volume (ν = 0.6). 
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      Figure 14 shows that the form factor with excluded volume (ν = 0.6) keeps on increasing while that 
without excluded volume (ν = 0.5) decreases at high-Q. This is due to the single-branch asymptotic 
variation which dominates. Note that 2 2 1 ν

sbQ P (Q )~ Q 1 Q→ ∞  so that 2 1 ν > 0−  for ν = 0.6 but 2 1 ν = 0−  
for ν = 0.5. 
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Fig. 14. Kratky Plot (Q2P(Q) vs Q) for the star form factors Pstar(Q) without (ν = 0.5) and with (ν = 0.6) excluded volume for nb = 3,  
a = 5 Å, and n = 100. 
 
 
3.4  Polymer Ring with Excluded Volume 
 
      When excluded volume is present, the form factor for ring polymers is similar to the single-branch form 
factor for stars with looping branches. 
 

  
2 2n

ring 2
i,j 11

1 Q aP (Q)= exp
6Dn

 
− 

 
∑     (49) 

 
where: 
 

   
2ν 2ν

11
11 2ν 2ν

( i+j ) nΔ
D = = .

Δ ( i+j ) +n

−−

− −
    (50) 

 
This form factor is simplified as follows: 
 

   
2 2 2ν 2νn

ring 2 2ν
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1 Q a |i j| |i j|P (Q)= exp 1
6n n
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The first term is dropped for n >>1. In order to simplify this equation, we take the continuous chain limit 
(whereby Q2a2/6<<1 and n >>1 but keeping Q2a2n2ν/6 finite) and change the summations into integrations: 
 

      ( ) ( )
1 2 2 2ν

2ν 2ν
ring

0

Q a nP (Q)=2 ds 1 s exp s 1 s .
6

 
− − − 

 
∫    (52) 

 
This integral is doable analytically only for ν = 1/2 yielding the result in terms of the Dawson integral noted 
earlier. 
      The radius of gyration squared is given by: 
 

    
2νn

2 2 2ν
g 2ν

i,j

1 |i j|R = a |i j| 1
2 n

 −
− − 

 
∑     (53) 

 
or in an integral form after variable change: 
 

      ( ) ( )
1

2 2 2ν 2ν 2ν 2 2ν
g

0

1 1R = ds 1 s a n s 1 s =a n
(2ν 1)(2ν 2) (4ν 1)(4ν 2)

 
− − − + + + + 

∫  

      
2 2ν

2
g 2 3

a n 3νR = .
2 1 7ν 14ν +8ν

 
 + + 

      (54) 

 
For ν = 1/2, the familiar result is recovered Rg

2 = a2n/12 which is half the result for linear chains. 
 
3.5  Comparing Stars with Linear and Looping Branches 
 
      The form factors for star-branched polymers with linear branches and with looping branches with and 
without excluded volume are compared in Fig. 15. Stars with looping branches appear more branched than 
the ones with linear branches. The case without excluded volume levels off at high-Q while the case with 
excluded volume keep on increasing as it should. 
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Fig. 15. Comparison of the two cases of stars with linear and with looping branches without and with excluded volume in each case 
and nb = 3, a = 5 Å, and n = 100. 
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4.  Form Factor for Dendrimers with Excluded Volume 
 
      Dendrimers are highly branched polymers that build up a large number of blocks after a few 
generations (Fig. 16). This is due to the fact that the number of blocks gets multiplied by a multiplication 
factor f at each generation. The form factor for flexible dendrimers has been calculated for Gaussian chain 
statistics [18]. 
      This form factor is generalized here to incorporate chain swelling effect (chain excluded volume). As 
done in the previous sections, chain excluded volume is included following the Flory approach. 
 

 
Fig. 16. Schematic representation of a dendrimer with Ng = 5 (five generations), nb = 2 (two branches), and f = 2 (number of blocks 
doubles at each generation). 
 
 
4.1  The Various Form Factors for Dendrimers 
 
      Standard notation is used throughout. The number of generations is Ng, the number of branches is nb 
and f is the multiplication factor. Considering a pair of blocks, the main contributions to the form factor are 
included here. These are the single-branch “self” correlations s

sbP (Q) , the single-branch “forward” 
correlations f

sbP (Q) , the single-branch “across” correlations a
sbP (Q) , and the inter-branch correlations 

ibP (Q) . 
 

Ng
s
sb

f 1P (Q)= *P(α)
f 1

−
−

       (55) 

 
Ng Ng

f k 1 l k
sb

k=1 l=k+1
P (Q)=2. f F(α) f .E(α,l k 1).F(α)− − − −∑ ∑     (56) 
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Ng Ng Ng
a r 2 k r l r
sb

r=2 k=r l=r

f(f 1)P (Q)=2. . f f F(α) f .E(α,k+l 2*r).F(α)
2

− − −−  −  
∑ ∑ ∑   (57) 

 
Ng Ng

k 1 l 1
ib

k=1 l=1
P (Q)= f F(α) f .E(α,k+l 2).F(α).− − −∑ ∑      (58) 

 
Here α is related to the scattering variable Q and the statistical segment length a as α = Q2a2/6. Note that in 
these form factors expressions, summations over k and l are over blocks and that each block contains n 
monomers. It should be mentioned that the forms introduced here are complete and have been generalized 
to incorporate excluded volume. For instance, the present form for a

sbP (Q)  corrects the previous incomplete 
form [18]. 
      Summations cover all block pairs to span the entire dendrimer. These partial form factors were obtained 
by starting from a small dendrimer (with a couple of generations only), then building up to the general case. 
These results have been verified to be correct by setting the α → 0 limit for which one can count the 
number of pairs directly from the dendrimer drawing. 
      The dendrimer form factor gathers all of these contributions as follows: 
 

( )( )s f f 2
b sb sb ab b b ib TP(Q)= n P (Q) P (Q) P (Q) n n 1 P (Q) N + + + −     (59) 

 

where 
Ng

T b
(f 1)N n
(f 1)

−
=

−
 is the total number of blocks. 

      The various partial correlation factors have been defined according to the number of summations 
involved as shown in Fig. 17. P(α) is the form factor, F(α) is the form factor amplitude and E(α) is the 
propagation factor. 

 
Fig. 17. Notation representing the various correlation factors. 

 
      This allows us to form inter-block correlations following the simple rule shown in the following 
example (Fig. 18). 

 
Fig. 18. Cases of a diblock and a triblock copolymers. 
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In the two examples considered, the following cross correlations can be formed as: 12 1 2P (Q) F (α)F (α)= and 

35 3 4 5P (Q) F (α)E (α)F (α)= . 
      The form factor for a polymer chain segment containing n monomers with excluded volume is 
reproduced here for completeness [13,14]. 
 

          
1/2ν 1/ν

1 1 1 1P(Q) γ( ,U) γ( ,U).
2ν ννU νU

= −    (60) 

 
Here, γ(x,U) is the incomplete gamma function defined before. The variable U is given in terms of the 
scattering variable Q as: 
 

          
2 2 2ν

2νQ a nU αn .
6

= =     (61) 

 
The form factor amplitude is also given in terms of the incomplete gamma function as:  
 

        1
2ν

1 1F(Q) γ( ,U).
2ν

2νU
=     (62) 

 
Finally, the propagation factor for an intermediate block with m*n monomers is given by: 
 

     ( )2νE(α,m) exp α(m*n) .= −     (63) 
 
The case for pure Gaussian chain statistics (i.e., with no excluded volume) is obtained for ν = 0.5. In this 
case, the various terms simplify as described here. For a block of n monomers, the form factor, form factor 
amplitude and propagator become: 
 

  2

exp( αn) 1 αnP(αn) 2
(αn)

− − +
=     (64) 

 

  1 exp( αn)F(αn)
(αn)

− −
=      (65) 

 
  ( )E(α,m) exp αn.m .= −      (66) 

 
The propagator was taken over m blocks of n monomers each. This simplified form of P(αn) is the familiar 
Debye function. 
 
4.2  Form Factors Trends 
 
      Here also, Mathematica was used to perform the various summations and plot a series of figures in 
order to document the trends. The limiting case with f = 1 was checked and found to agree with the star 
polymer with linear branches. 
      The dendrimer form factor Pdend(Q) is plotted for a realistic set of parameters both with (ν = 0.6) and 
without (ν = 0.5) excluded volume. Pdend(Q) is normalized to 1 at low-Q. At high-Q, the asymptotic limit 
Pdend(Q) obeys the asymptotic limit Q1/ν as expected (Fig. 19). 
      The Kratky plot for dendrimers with (ν = 0.6) and without (ν = 0.5) excluded volume. (Q2 * Pdend(Q) vs 
Q2) presents a peak that represents the boundary between the single-branch and inter-branch contributions 
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(Fig. 20). The case with excluded volume has a peak at lower Q since fully swollen chains are more 
extended that ideal ones. 
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Fig. 19. Dendrimer form factor Pdend(Q) for a = 5 Å, nb = 3, f = 2, Ng = 5, and n = 10 without and with excluded volume. 
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Fig. 20. Kratky plot for the same conditions as the previous figure. 
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Figure 21 compares the effect of excluded volume for the various partial form factors. Chain swelling has 
the effect of shifting the form factors to lower-Q. Chain swelling has strong effect on the overall dendrimer 
structure (i.e., at low-Q) but has a smaller effect on the local dendrimer structure (at high-Q). 
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Fig. 21. Dendrimer partial form factors for a = 5 Å, nb = 3, f = 2, Ng = 5, and n = 10 without and with excluded volume. 

 
 
      When the block multiplication factor f is increased, the Kratky plot shows increased branching as 
evidenced by a more pronounced peak (Fig. 22). The peak position moves towards lower-Q. The f = 1 case 
reproduces the linear star form factor, which does not have a peak in the Kratky plot for nb = 3. 
      When the number of dendrimer generations is increased, the dendrimers become larger but the overall 
shape of the form factor remains unchanged (Fig. 23). Note the high-Q asymptotic scaling behavior  
1/Q5/3 1/ν 5/3

dendP (Q)~1/Q ~1/Q  coming from the single-block form factor and the intermediate-Q scaling 
1/Q10/3 which involves the square of the form factor amplitude |F(Q)|2 ~ 1/Q2/ν ~ 1/Q10/3 in the fully swollen 
chain case ( ν 3 5 0.6= = ). 
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Fig. 22. Kratky plot for the same conditions as before with excluded volume (ν = 0.6) but varying the generation multiplication factor f. 
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Fig. 23. Kratky plot for the same conditions as before with excluded volume (ν = 0.6) but varying the number of generations Ng. 
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4.3  Comments 
 
      The form factor for dendrimers presented here is complete and has been generalized to include chain 
swelling. Since this general form could not be simplified to an analytical form, it is kept in terms of 
numerical summations. The functional forms for the nonlinear least-squares fitting form factor would 
involve such summations. 
      There are two forms of excluded volume, one due to chain swelling discussed here and the other due to 
the physical exclusion of chain portions by other branches to avoid block overlap especially close the 
dendrimer center. This second form of excluded volume could not be accounted for by a Flory-type of 
approach. Such contribution could be accounted for only through computer simulation. 
      Results were presented in a compact form involving numerical summations. The various partial form 
factors were discussed in detail and trends of their behavior were documented. 
 
 
5.  Summary 
 
      The form factor for branched polymers with chain-swelling excluded volume was calculated for star-
branched polymers and dendrimers. The approach presented here is simple enough to be tractable. It is 
based on the Flory idea of excluded volume, which was developed to obtain analytical expressions 
involving incomplete gamma functions. It has been extended to many cases of branched systems and 
yielded reasonable results. This form factor is dominated by the inter-chain contributions at low-Q and by 
the single-chain contributions at high-Q. The transition between these two regions is characterized by a 
peak in the Kratky plot. In the case of star-branched polymers with linear branches, the inter-branch form 
factor was expressed in two forms, one approximate form using form factor amplitudes and the other 
formally “exact” (within this formalism) using form factors and the binomial formula to calculate the cross 
terms. 
      In the case of star-branched polymers with looping branches, an original idea of building looped 
branches from linear chains then applying judicious “crosslinks” allowed the use of the multivariate 
Gaussian distribution to obtain compact results. The form factor for ring polymers with excluded volume 
was obtained from the single-branch scattering factor for stars with looping branches. The corresponding 
radius of gyration was included as well. In the case of dendrimers, the complete and general case that 
incorporates excluded volume is presented here for the first time. In fact, lots of the material presented in 
this paper is original and cannot be found in the open literature. It is felt that such form factors are much 
needed to analyze scattering data. 
      Note that the form factor alone is not enough to analyze scattering data. Structure factor contributions 
due to finite concentration effects should be included. This is outside of the scope of this theoretical 
contribution. The Random Phase Approximation (RPA) is a valuable method for expressing structure 
factors for polymer mixtures in solution as well as the blend state [13]. 
 
Acknowledgements 
 
      Informative discussions with Vivek Prabhu and Wei-Ren Chen are appreciated. This work is based 
upon activities supported in part by the National Science Foundation under Agreement No. DMR-1508249. 
 
 
6.  References 
 
[1]  Benoit H (1953) On the effect of branching and polydispersity on the angular distribution of the light scattered by Gaussian 

coils. J Polym Sci 11(5):507-510. http://dx.doi.org/10.1002/pol.1953.120110512  
[2]  Li X, Do C, Liu Y, Sánchez-Diáz L, Smith G, & Chen W-R (2014) A scattering function of star polymers including excluded 

volume effects. J Appl Cryst 47(6):1901-1905. http://dx.doi.org/10.1107/S1600576714022249  
[3]  Eizenberg N & Klafter J (1993) Self-avoiding walks on a simple cubic lattice. J Chem Phys 99(5):3976-3982. 

http://dx.doi.org/10.1063/1.466144  

http://dx.doi.org/10.6028/jres.121.006
http://dx.doi.org/10.6028/jres.121.006
http://dx.doi.org/10.1002/pol.1953.120110512
http://dx.doi.org/10.1107/S1600576714022249
http://dx.doi.org/10.1063/1.466144


 Volume 121 (2016) http://dx.doi.org/10.6028/jres.121.006 
 Journal of Research of the National Institute of Standards and Technology 
 
 
 

 164 http://dx.doi.org/10.6028/jres.121.006 

 

[4]  Valleau JP (1996) Distribution of end-to-end length of an excluded-volume chain. J Chem Phys 104(8):3071-3074. 
http://dx.doi.org/10.1063/1.471073  

[5]  des Cloizeaux J (1974) Lagrangian theory for a self-avoiding random chain. Physical Review A 10(5):1665-1669. 
[6]  Ohta T, Oono Y, & Freed KF (1982) Static-coherent-scattering function for a single polymer-chain - conformational space 

renormalization of polymers. Physical Review A 25(5):2801-2811. http://dx.doi.org/10.1103/PhysRevA.25.2801  
[7]  Alessandrini JL & Carignano MA (1992) Static scattering function for a regular star-branched polymer. Macromolecules 

25(3):1157-1163. http://dx.doi.org/10.1021/Ma00029a024  
[8]  Boothroyd AT, Squires GL, Fetters LJ, Rennie AR, Horton JC, & De Vallera AMBG (1989) Small-angle neutron scattering 

from star-branched polymers in dilute solution. Macromolecules 22(7):3130-3137. http://dx.doi.org/10.1021/ma00197a040  
[9]  Horton JC, Squires GL, Boothroyd AT, Fetters LJ, Rennie AR, Glinka CJ, & Robinson RA (1989) Small-angle neutron 

scattering from star-branched polymers in the molten state. Macromolecules 22(2):681-686. 
http://dx.doi.org/10.1021/ma00192a029  

[10]  Borisov OV, Zhulina EB, Leermakers FAM, & Muller AHE (2011) Self-assembled structures of amphiphilic ionic block 
copolymers: theory, self-consistent field modeling and experiment. Adv Polym Sci 241:57-129. 
http://dx.doi.org/10.1007/12_2011_114  

[11]  Dozier WD, Huang JS, & Fetters LJ (1991) Colloidal nature of star polymer dilute and semidilute solutions. Macromolecules 
24(10):2810-2814. http://dx.doi.org/10.1021/Ma00010a026  

[12]  Akcasu AZ & Benmouna M (1978) Concentration effects on the dynamic structure factor in polymer solutions. 
Macromolecules 11(6):1193-1198. http://dx.doi.org/10.1021/ma60066a024  

[13]  Hammouda B (1993) SANS from homogeneous polymer mixtures: A unified overview. Advances in Polym Sci 106:87-133. 
http://dx.doi.org/10.1007/BFb0025862   

[14]  Benoit H (1957) La diffusion de la lumiere par des macromolecules en chaines en solution dans un bon solvant. Cr Hebd Acad 
Sci 245(25):2244-2247. 

[15]  Fukatsu M & Kurata M (1966) Hydrodynamic properties of flexible-ring macromolecules. J Chem Phys 44(12):4539-4545. 
http://dx.doi.org/10.1063/1.1726671   

[16]  Hammouda B (1993) Structure factors for regular polymer gels and networks. J Chem Phys 99(11):9182-9187. 
http://dx.doi.org/10.1063/1.465533   

[17]  Casassa EF (1965) Some statistical properties of flexible ring polymers. J Polym Sci Part A 3(2pa):605-614. 
http://dx.doi.org/10.1002/pol.1965.100030217     

[18]  Hammouda B (1992) Scattering factor for starburst dendrimers. J Polym Sci, Polym Phys Ed 30:1387-1390. 
http://dx.doi.org/10.1002/polb.1992.090301209  

 
 
 
About the author: Boualem Hammouda is a senior scientist in the Center for Neutron Research at NIST. 
He has been carrying out research in the area of small-angle neutron scattering for over 25 years. Check 
out his publications at http://www.ncnr.nist.gov/staff/hammouda/. The National Institute of Standards and 
Technology is an agency of the U.S. Department of Commerce. 
 

http://dx.doi.org/10.6028/jres.121.006
http://dx.doi.org/10.6028/jres.121.006
http://dx.doi.org/10.1063/1.471073
http://dx.doi.org/10.1103/PhysRevA.25.2801
http://dx.doi.org/10.1021/Ma00029a024
http://dx.doi.org/10.1021/ma00197a040
http://dx.doi.org/10.1021/ma00192a029
http://dx.doi.org/10.1007/12_2011_114
http://dx.doi.org/10.1021/Ma00010a026
http://dx.doi.org/10.1021/ma60066a024
http://dx.doi.org/10.1007/BFb0025862
http://dx.doi.org/10.1063/1.1726671
http://dx.doi.org/10.1063/1.465533
http://dx.doi.org/%2010.1002/pol.1965.100030217
http://www.ncnr.nist.gov/staff/hammouda/publications/1992_hammouda_j_polym_sci.pdf
http://dx.doi.org/10.1002/polb.1992.090301209

